Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

How to choose the computational compartment or cell size for the stochastic simulation of a reaction-diffusion system is still an open problem, and a number of criteria have been suggested. A generalized measure of the noise for finite-dimensional systems based on the largest eigenvalue of the covariance matrix of the number of molecules of all species has been suggested as a measure of the overall fluctuations in a multivariate system, and we apply it here to a discretized reaction-diffusion system. We show that for a broad class of first-order reaction networks this measure converges to the square root of the reciprocal of the smallest mean species number in a compartment at the steady state. We show that a suitably re-normalized measure stabilizes as the volume of a cell approaches zero, which leads to a criterion for the maximum volume of the compartments in a computational grid. We then derive a new criterion based on the sensitivity of the entire network, not just of the fastest step, that predicts a grid size that assures that the concentrations of all species converge to a spatially-uniform solution. This criterion applies for all orders of reactions and for reaction rate functions derived from singular perturbation or other reduction methods, and encompasses both diffusing and non-diffusing species. We show that this predicts the maximal allowable volume found in a linear problem, and we illustrate our results with an example motivated by anterior-posterior pattern formation in Drosophila, and with several other examples.

Citation

Hye-Won Kang, Likun Zheng, Hans G Othmer. A new method for choosing the computational cell in stochastic reaction-diffusion systems. Journal of mathematical biology. 2012 Dec;65(6-7):1017-99

Expand section icon Mesh Tags


PMID: 22071651

View Full Text