Correlation Engine 2.0
Clear Search sequence regions


Sol i 2 is a potent allergen from the venom of red imported fire ant, which contains allergens Sol i 1, Sol i 2, Sol i 3, and Sol i 4 that are known to be powerful triggers of anaphylaxis. Sol i 2 causes IgE antibody production in about one-third of individuals stung by fire ants. Baculovirus recombinant dimeric Sol i 2 was crystallized as a native and selenomethionyl-derivatized protein, and its structure has been determined by single-wavelength anomalous dispersion at 2.6 Å resolution. The overall fold of each subunit consists of five helices that enclose a central hydrophobic cavity. The structure is stabilized by three intramolecular disulfide bridges and one intermolecular disulfide bridge. The nearest structural homologue is the sequence-unrelated odorant binding protein and pheromone binding protein LUSH of the fruit fly Drosophila, which may suggest a similar biological function. To test this hypothesis, we measured the reversible binding of various pheromones, plant odorants, and other ligands to Sol i 2 by the changes in N-phenyl-1-naphthylamine fluorescence emission upon binding of ligands that compete with N-phenyl-1-naphthylamine. The highest binding affinity was observed for hydrophobic ligands such as aphid alarm pheromone (E)-β-farnesene, analogs of ant alarm pheromones, and plant volatiles decane, undecane, and β-caryophyllene. Conceivably, Sol i 2 may play a role in capturing and/or transporting small hydrophobic ligands such as pheromones, odors, fatty acids, or short-living hydrophobic primers. Molecular surface analysis, in combination with sequence alignment, can explain the serological cross-reactivity observed between some ant species. Copyright © 2011 Elsevier Ltd. All rights reserved.

Citation

Aline S Borer, Paul Wassmann, Margit Schmidt, Donald R Hoffman, Jing-Jiang Zhou, Christine Wright, Tilman Schirmer, Zora Marković-Housley. Crystal structure of Sol I 2: a major allergen from fire ant venom. Journal of molecular biology. 2012 Jan 27;415(4):635-48

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22100449

View Full Text