Correlation Engine 2.0
Clear Search sequence regions


Pyrimidine biosynthesis in the nutritionally versatile bacterium Pseudomonas veronii ATCC 700474 appeared to be controlled by pyrimidines. When wild type cells were grown on glucose in the presence of uracil, four enzyme activities were depressed while all five enzyme activities increased in succinate-grown cells supplemented with uracil. Independent of carbon source, orotic acid-grown cells elevated aspartate transcarbamoylase, dihydroorotase, orotate phosphoribosyltransferase or OMP decarboxylase activity. Pyrimidine limitation of glucose-grown pyrimidine auxotrophic cells lacking OMP decarboxylase activity resulted in at least a doubling of the enzyme activities relative to their activities in uracil-grown cells. Less derepression of the enzyme activities was observed after pyrimidine limitation of succinate-grown mutant cells possibly due to catabolite repression. Aspartate transcarbamoylase activity in Ps. veronii was regulated at the level of enzyme activity since the enzyme was strongly inhibited by pyrophosphate, UDP, UTP, ADP, ATP and GTP. Overall, the regulation of pyrimidine biosynthesis in Ps. veronii could be used to differentiate it from other taxonomically related species of Pseudomonas. Copyright © 2011 Elsevier GmbH. All rights reserved.

Citation

Thomas P West. Pyrimidine biosynthesis in Pseudomonas veronii and its regulation by pyrimidines. Microbiological research. 2012 May 20;167(5):306-10

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22112688

View Full Text