Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Microbial production of C(4) dicarboxylic acids from renewable resources has gained renewed interest. The yeast Saccharomyces cerevisiae is known as a robust microorganism and is able to grow at low pH, which makes it a suitable candidate for biological production of organic acids. However, a successful metabolic engineering approach for overproduction of organic acids requires an incorporation of a proper exporter to increase the productivity. Moreover, low-pH fermentations, which are desirable for facilitating the downstream processing, may cause back diffusion of the undissociated acid into the cells with simultaneous active export, thereby creating an ATP-dissipating futile cycle. In this work, we have studied the uptake of fumaric acid in S. cerevisiae in carbon-limited chemostat cultures under anaerobic conditions. The effect of the presence of fumaric acid at different pH values (3 to 5) has been investigated in order to obtain more knowledge about possible uptake mechanisms. The experimental results showed that at a cultivation pH of 5.0 and an external fumaric acid concentration of approximately 0.8 mmol ยท liter(-1), the fumaric acid uptake rate was unexpectedly high and could not be explained by diffusion of the undissociated form across the plasma membrane alone. This could indicate the presence of protein-mediated import. At decreasing pH levels, the fumaric acid uptake rate was found to increase asymptotically to a maximum level. Although this observation is in accordance with protein-mediated import, the presence of a metabolic bottleneck for fumaric acid conversion under anaerobic conditions could not be excluded.

Citation

Elaheh Jamalzadeh, Peter J T Verheijen, Joseph J Heijnen, Walter M van Gulik. pH-dependent uptake of fumaric acid in Saccharomyces cerevisiae under anaerobic conditions. Applied and environmental microbiology. 2012 Feb;78(3):705-16

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22113915

View Full Text