Correlation Engine 2.0
Clear Search sequence regions


Although there is evidence that nicotinic acetylcholine (Ach) receptors are influenced by ceramides, we do not currently know whether or not these sphingolipids can also regulate the muscarinic subtypes of Ach receptors. Using the whole-cell patch technique, we demonstrated that the effectiveness of the muscarinic receptor agonist pilocarpine, in enhancing spontaneous inhibitory postsynaptic currents in CA1 pyramidal cells, was completely abolished in hippocampal slices pre-exposed to the ceramide-generating enzyme sphingomyelinase (SMase). Western blot experiments, performed with biotinylated hippocampal membranes, showed that this electrophysiological defect possibly relies on the loss of M1 muscarinic Ach receptors at the cell surface. However, the effect appears to be relatively specific as the cell-surface expression of M4 muscarinic receptors was not found to be impacted by SMase treatment. Interestingly, we observed that G protein-coupled receptor kinases 2 and β-arrestin1/2 interactions with M1-immunoprecipitated proteins were substantially augmented in SMase-treated slices and that the reduction of cell-surface M1 muscarinic receptor expression generated was completely suppressed by the muscarinic antagonist atropine. Collectively, our data suggest that selective internalization of M1 muscarinic receptors can be accentuated in neurons subjected to high ceramide levels. The potential physiopathological implications of this finding are presented. Copyright © 2012 Wiley Periodicals, Inc.

Citation

Eve Dontigny, Christian Patenaude, Michel Cyr, Guy Massicotte. Sphingomyelinase selectively reduces M1 muscarinic receptors in rat hippocampal membranes. Hippocampus. 2012 Jul;22(7):1589-96

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22228652

View Full Text