Correlation Engine 2.0
Clear Search sequence regions


We assessed human mesenchymal stem cells (MSCs) harvested from breast and abdominal adipose tissues enriched in embryonic stage-specific antigen (SSEA-4) expression for osteogenic and adipogenic differentiation in comparison to a mixed cell population. Human adipose was obtained from abdominal and breast tissues of females undergoing gastric bypass and breast reduction, respectively. SSEA-4-expressing cells were enriched from the mixed cell population by magnetic cell sorting and expanded in culture. The results showed that freshly isolated cells from breast and abdominal tissues based on adipose from 3 patients comprised 12 and 10% SSEA-4+ cells, respectively. At passage 0, 48% of the cells from breast adipose tissue were positive for SSEA-4 while 12% of the cells from abdominal adipose tissue were positive for this antigen. The level of SSEA-4-expressing cells remained relatively constant with passaging; SSEA-4-expressing cells from breast tissue comprised 45% of the total while 27% of the cells from abdominal adipose tissue expressed SSEA-4 at passage 5. Cells sorted for SSEA-4 expression exhibited a higher potential for differentiation toward osteogenic and adipogenc cell lineages in vitro when compared to a mixed population. Interestingly, SSEA-4 expression was lost upon differentiation, suggesting that the antigen marks a subpopulation of MSCs. Taken together, the data demonstrate that breast adipose tissue is highly enriched in a subpopulation of MSCs expressing SSEA-4 and suggest that SSEA-4 may be a marker of a subpopulation of MSCs with high potential for osteogenic and adipogenic differentiation. Copyright © 2012 S. Karger AG, Basel.

Citation

Jacquelyn R Maddox, Katherine D Ludlow, Feng Li, Christopher Niyibizi. Breast and abdominal adipose multipotent mesenchymal stromal cells and stage-specific embryonic antigen 4 expression. Cells, tissues, organs. 2012;196(2):107-16

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22237379

View Full Text