Correlation Engine 2.0
Clear Search sequence regions


  • asters (3)
  • cytoskeleton (1)
  • Dyneins (9)
  • fibroblast (1)
  • Sizes of these terms reflect their relevance to your search.

    Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the 'cortical' interaction between dynein and dynamic microtubule ends in an in vitro system using microfabricated barriers. We show that barrier-attached dynein captures microtubule ends, inhibits growth, and triggers microtubule catastrophes, thereby controlling microtubule length. The subsequent interaction with shrinking microtubule ends generates pulling forces up to several pN. By combining experiments in microchambers with a theoretical description of aster mechanics, we show that dynein-mediated pulling forces lead to the reliable centering of microtubule asters in simple confining geometries. Our results demonstrate the intrinsic ability of cortical microtubule-dynein interactions to regulate microtubule dynamics and drive positioning processes in living cells. Copyright © 2012 Elsevier Inc. All rights reserved.

    Citation

    Liedewij Laan, Nenad Pavin, Julien Husson, Guillaume Romet-Lemonne, Martijn van Duijn, Magdalena Preciado López, Ronald D Vale, Frank Jülicher, Samara L Reck-Peterson, Marileen Dogterom. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell. 2012 Feb 03;148(3):502-14

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 22304918

    View Full Text