Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Copolyimide membranes are established materials for the separation of gaseous and liquid mixtures. Cross-linking of the polymer strands improves the physical and chemical stability. The photo-cross-linking of a 6FDA-ODA/6FDA-DABA 4 : 1 copolyimide membrane containing maleimide side groups as linker was investigated by FTIR spectroscopy. IR absorption spectra of the copolyimide backbone, 3-hydroxypropyldimethyl maleimide and the copolyimide functionalized with 3-hydroxypropyldimethyl maleimide were measured before and after different irradiation times and compared to each other. For band assignment a normal mode analysis was performed. The backbone of the polymer and the maleimide linker can be well distinguished due to their different spectral band positions. Only the films containing a maleimide moiety perform a photoreaction, the polymer backbone does not interfere. Based on the difference spectra and the results of the DFT calculations it was shown that the trans- and the cis-cycloadduct as well as the previously suggested 2-2'-adduct without a cyclobutane ring are formed upon UV irradiation. Evidence for an oxetane-like photoproduct was not found. Different time constants for the increase of the product bands were observed. The cycloadduct accumulates with a shorter time constant (τ = 2 to 5 min) than the 2-2'-adduct (τ = 75 min). The yield of the photo-cross-linking reaction was determined by spectral deconvolution and kinetic fitting of several marker bands. For the copolyimide synthesized in this work, a maximum value of 6% was reached. The stiffness of the copolyimide backbone inhibits further photo-cross-linking.

Citation

Katharina Hunger, Laura Buschhaus, Nadine Schmeling, Claudia Staudt, Anna Pfeifer, Karl Kleinermanns. Characterization of maleimide dimers in photo-cross-linked copolyimide films. Physical chemistry chemical physics : PCCP. 2012 Apr 7;14(13):4538-47

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22366816

View Full Text