Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The effects of accelerated carbonation on the compressive strength and leachability of fly ash-based geopolymer and ordinary portland cement (OPC) doped with Cd(II), Cr(III), Cr(VI), Cu(II), Pb(II) or Zn(II) salts were investigated. Cement was effective at immobilizing Cd, Cr(III), Cu, Pb and Zn under both the Synthetic Precipitation Leaching Procedure (SPLP) and the Toxicity Characteristic Leaching Procedure (TCLP), but ineffective for retaining Cr(VI). Carbonated cement maintained its ability to immobilize Cd, Cr(III), Pb and Zn, but, under acidic TCLP conditions, was much worse at retaining Cu. Geopolymer was effective at immobilizing Cr(III) and Cu, and, to a lesser degree, Cd, Pb and Zn in SPLP leaching tests. Only Cr(III) was immobilized under comparatively acidic TCLP testing conditions. Carbonation did not change the metal retention capacity of the geopolymer matrix. Metal doping caused compressive strengths of both geopolymer and cement to decrease. Carbonation increased the compressive strength of cement, but decreased that of the geopolymer. Geochemical equilibrium modeling provided insight on the mechanisms of metal immobilization. Copyright © 2012 Elsevier Ltd. All rights reserved.


Bhishan Pandey, Stephen D Kinrade, Lionel J J Catalan. Effects of carbonation on the leachability and compressive strength of cement-solidified and geopolymer-solidified synthetic metal wastes. Journal of environmental management. 2012 Jun 30;101:59-67

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 22406845

View Full Text