Correlation Engine 2.0
Clear Search sequence regions


The transcription factor signal transducer and activator of transcription 3 (STAT3) has two important phosphorylation sites, Tyr705 and Ser727, for its activation. Ser727 phosphorylation has been considered to be a secondary event after Tyr705 phosphorylation. In this study, the role and regulation of Ser727 phosphorylation in STAT3 in melanocytic cells were examined. STAT3 was phosphorylated on Ser727 in the absence of Tyr705 phosphorylation in melanocytes. 12-O-tetradecanoylphorbol-13-acetate-induced increase in cell survival activity and nuclear translocation of STAT3 was associated with Ser727 phosphorylation. Ser727 was constitutively phosphorylated in all melanoma cell lines examined irrespective of Tyr705 phosphorylation. The possible involvement of Ser727 phosphorylation in STAT3 in cell survival activity and nuclear translocation of STAT3 in melanocytes was demonstrated also in melanoma cells. The constitutive Ser727 phosphorylation in melanoma cells was partially mediated by the B-Raf-MEK-ERK1/2 pathway. Immunohistochemical studies on specimens of primary lesions of acral lentiginous melanoma revealed that Ser727 phosphorylation precedes Tyr705 phosphorylation in the early stages of melanoma progression. Our results indicate that Ser727 phosphorylation on STAT3 is not necessarily a secondary event after Tyr705 phosphorylation and suggest that it has a role in the regulation of cell survival activity and nuclear translocation of STAT3 in melanocytic cells.

Citation

Masanobu Sakaguchi, Masahiro Oka, Tetsushi Iwasaki, Yasuo Fukami, Chikako Nishigori. Role and regulation of STAT3 phosphorylation at Ser727 in melanocytes and melanoma cells. The Journal of investigative dermatology. 2012 Jul;132(7):1877-85

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22418867

View Full Text