Correlation Engine 2.0
Clear Search sequence regions


  • cholesterol (1)
  • protein levels (1)
  • rats (1)
  • retina (3)
  • rna (1)
  • Sizes of these terms reflect their relevance to your search.

    Nanoliposomal technology is a promising drug delivery system that could be employed to improve the pharmacokinetic properties of clearance and distribution in ocular drug delivery to the retina. We developed a nanoscale version of an anionic, cholesterol-fusing liposome that can encapsulate therapeutic levels of minocycline capable of drug delivery. We demonstrate that size extrusion followed by size-exclusion chromatography can form a stable 80-nm liposome that encapsulates minocycline at a concentration of 450 ± 30 μM, which is 2% to 3% of loading material. More importantly, these nontoxic nanoliposomes can then deliver 40% of encapsulated minocycline to the retina after a subconjunctival injection in the STZ model of diabetes. Efficacy of therapeutic drug delivery was assessed via transcriptomic and proteomic biomarker panels. For both the free minocycline and encapsulated minocycline treatments, proinflammatory markers of diabetes were downregulated at both the messenger RNA and protein levels, validating the utility of biomarker panels for the assessment of ocular drug delivery vehicles. Authors developed a nano-liposome that can encapsulate minocycline for optimized intraocular drug delivery. These nontoxic nanoliposomes delivered 40% of encapsulated minocycline to the retina after a subconjunctival injection in a diabetes model. Copyright © 2013 Elsevier Inc. All rights reserved.

    Citation

    James M Kaiser, Hisanori Imai, Jeremy K Haakenson, Robert M Brucklacher, Todd E Fox, Sriram S Shanmugavelandy, Kellee A Unrath, Michelle M Pedersen, Pingqi Dai, Willard M Freeman, Sarah K Bronson, Thomas W Gardner, Mark Kester. Nanoliposomal minocycline for ocular drug delivery. Nanomedicine : nanotechnology, biology, and medicine. 2013 Jan;9(1):130-40

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 22465498

    View Full Text