Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Scoparone is an important constituent of Yinchenhao (Artemisia annua L.), a famous Chinese medicinal plant, and has several known bioactivities, and displayed bright prospects in prevention and therapy of jaundice and liver disorders. The aim of this study was to investigate the in vivo plasma pharmacokinetic and tissue distribution characteristics of scoparone after oral administration. The levels of scoparone in plasma, and tissues were measured by a rapid and sensitive UPLC-MS/MS method. The biosamples were prepared using methanolic precipitation and the separation of scoparone was achieved on a UPLC HSS T3 column by linear gradient elution using water (containing 0.1% formicacid) and acetonitrile (containing 0.1% formic acid) as the mobile phase at a flow rate of 0.5mL/min The total run time was only 3.9min. Our results successfully demonstrate that this method has excellent and satisfactory selectivity, sensitivity, linearity, precision, accuracy and recovery. The estimated pharmacokinetic parameters (i.e., C(max), AUC and CL), were C(max)=14.67mg/L, AUC=81.15mg*h/L, CL=1.23L/h for scoparone. The pharmacokinetic study found that scoparone was distributed and eliminated rapidly in rats. Tissue distribution showed the highest level was observed in liver, followed by the kidney and spleen; the lower level appeared in the muscle, thyroid, and adrenal. It was not detected in the brain which indicated that scoparone does not cross the blood-brain barrier after oral administration. Our developed method was suitable for the study on pharmacokinetics and tissue distribution of scoparone after oral administration. Copyright © 2012 Elsevier B.V. All rights reserved.

Citation

Quanwei Yin, Hui Sun, Aihua Zhang, Xijun Wang. Pharmacokinetics and tissue distribution study of scoparone in rats by ultraperformance liquid-chromatography with tandem high-definition mass spectrometry. Fitoterapia. 2012 Jun;83(4):795-800

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22465507

View Full Text