Correlation Engine 2.0
Clear Search sequence regions


Calcium/calmodulin-dependent protein kinase type II (CaMKII) is a highly abundant serine/threonine kinase comprising a significant fraction of total protein in mammalian forebrain and forming a major component of the postsynaptic density. CaMKII is essential for certain forms of synaptic plasticity and memory consolidation and this is mediated through substrate binding and intramolecular phosphorylation of holoenzyme subunits. CaMKII is multifunctional; it targets a variety of cellular substrates, and this diversity depends on holoenzyme subunit composition. CaMKII comprises homooligomeric and heterooligomeric complexes generated from four subunits (α, β, δ, and γ) encoded by separate genes that are further expanded by extensive alternative splicing to more than 30 different isoforms. Much attention has been paid to understanding the regulation of CaMKII function through its structural diversity and/or substrate specificity. However, given the importance of subunit composition to holoenzyme activity, it is likely that specificity of cellular expression of CaMKII isoforms also plays a major role in regulation of enzyme function. Herein we review the cellular colocalization of CaMKII isoforms with special regard to the cell-type specificity of isoform expression in brain. In addition, we highlight the remarkable specificity of subcellular localization by the CaMKIIα isoform. In addition, we discuss the role that this cellular specificity of expression might play in propagating the type of recurrent neuronal activity associated with disorders such as temporal lobe epilepsy. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

Citation

Xiao-Bo Liu, Karl D Murray. Neuronal excitability and calcium/calmodulin-dependent protein kinase type II: location, location, location. Epilepsia. 2012 Jun;53 Suppl 1:45-52

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22612808

View Full Text