Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The freezing pattern and frost killing temperatures of apple (Malus domestica Borkh.) xylem were determined by differential thermal analysis and infrared differential thermal analysis (IDTA). Results from detached or attached twigs in controlled freezing experiments and during natural field freezing of trees were compared. Non-lethal freezing of apoplastic water in apple xylem as monitored during natural winter frosts in the field occurred at -1.9 ± 0.4 °C and did not change seasonally. The pattern of whole tree freezing was variable and specific to the environmental conditions. On detached twigs high-temperature freezing exotherms (HTEs) occurred 2.8 K below the temperature observed under natural frosts in the field with a seasonal mean of -4.7 ± 0.5 °C. Microporous apple xylem showed freezing without a specific pattern within a few seconds in IDTA images during HTEs, which is in contrast to macroporous xylem where a 2D freezing pattern mirrors anatomical structures. The pith tissue always remained unfrozen. Increasing twig length increased ice nucleation temperature; for increased twig diameter the effect was not significant. In attached twigs frozen in field portable freezing chambers, HTEs were recorded at a similar mean temperature (-4.6 ± 1.0 °C) to those for detached twigs. Upon lethal intracellular freezing of apple xylem parenchyma cells (XPCs) low-temperature freezing exotherms (LTEs) can be recorded. Low-temperature freezing exotherms determined on detached twigs varied significantly between a winter minimum of -36.9 °C and a summer maximum -12.7 °C. Within the temperature range wherein LTEs were recorded by IDTA in summer (-12.7 ± 0.5 to -20.3 ± 1.1 °C) various tiny clearly separated discontinuous freezing events could be detected similar to that in other species with contrasting XPC anatomy. These freezing events appeared to be initially located in the primary and only later in the secondary xylem. During the LTE no freezing events in the bark and central pith tissue were recorded. Attached twigs were exposed to various freezing temperatures at which LTEs occur. Even if 60% of XPCs were frost-damaged twigs were able to recuperate and showed full re-growth indicating a high regeneration capacity even after severe frost damage to XPCs.


Manuel Pramsohler, Jürgen Hacker, Gilbert Neuner. Freezing pattern and frost killing temperature of apple (Malus domestica) wood under controlled conditions and in nature. Tree physiology. 2012 Jul;32(7):819-28

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 22628198

View Full Text