Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Antioxidants added to vegetable oils to prevent lipid oxidation significantly affect their biodegradation in impacted aquatic environments. In this study, the effect of butylated-hydroxytoluene (BHT) on the biodegradation of glyceryl trilinoleate, a model vegetable oil highly susceptible to autoxidation, was determined. Biodegradation experiments were conducted in respirometric microcosms at an oil loading of 333 gal acre(-1) (0.31 L m(-2)) and BHT concentrations ranging from 0 to 800 mg kg(-1) (0, 50, 100, 200, 400, and 800 mg kg(-1)). Competition between polymerization and biodegradation of the oil was observed at all BHT concentrations and was significant in the microcosms not supplemented with the antioxidant. In all microcosms, intractable rigid polymers unavailable for bacterial degradation were formed. Infrared analysis evidenced the advanced stages of the oil autoxidation. After 19 weeks of incubation, only about 41% of the oil was mineralized in the microcosms with no BHT. However, mineralization exceeded 67% in the microcosms with added antioxidant and did not significantly increase with increasing BHT concentrations. Biodegradation rate constants were calculated by nonlinear regression and were not significantly different in the microcosms with added BHT (k = 0.001 h(-1)). Higher k values were measured in the microcosms lacking the antioxidant (k = 0.0023 h(-1)), most likely due to the increased oxygen consumption associated with the autoxidation process in this case. No toxicity was detected in all biotic microcosms at the end of the incubation period, while high toxicity (EC(50) = 4.78%) was measured in the abiotic blanks with no antioxidant and was attributed to the accumulation of autoxidation products.


Darine A Salam, Makram T Suidan, Albert D Venosa. Effect of butylated hydroxytoluene (BHT) on the aerobic biodegradation of a model vegetable oil in aquatic media. Environmental science & technology. 2012 Jun 19;46(12):6798-805

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 22680298

View Full Text