Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The half-life of a protein is regulated by a range of system properties, including the abundance of components of the degradative machinery and protein modifiers. It is also influenced by protein-specific properties, such as a protein's structural make-up and interaction partners. New experimental techniques coupled with powerful data integration methods now enable us to not only investigate what features govern protein stability in general, but also to build models that identify what properties determine each protein's metabolic stability. In this work we present five groups of features useful for predicting protein stability: (1) post-translational modifications, (2) domain types, (3) structural disorder, (4) the identity of a protein's N-terminal residue and (5) amino acid sequence. We incorporate these features into a predictive model with promising accuracy. At a 20% false positive rate, the model exhibits an 80% true positive rate, outperforming the only previously proposed stability predictor. We also investigate the impact of N-terminal protein tagging as used to generate the data set, in particular the impact it may have on the measurements for secreted and transmembrane proteins; we train and test our model on a subset of the data with those proteins removed, and show that the model sustains high accuracy. Finally, we estimate system-wide metabolic stability by surveying the whole human proteome. We describe a variety of protein features that are significantly over- or under-represented in stable and unstable proteins, including phosphorylation, acetylation and destabilizing N-terminal residues. Bayesian networks are ideal for combining these features into a predictive model with superior accuracy and transparency compared to the only other proposed stability predictor. Furthermore, our stability predictions of the human proteome will find application in the analysis of functionally related proteins, shedding new light on regulation by protein synthesis and degradation.


Ralph Patrick, Kim-Anh Lê Cao, Melissa Davis, Bostjan Kobe, Mikael Bodén. Mapping the stabilome: a novel computational method for classifying metabolic protein stability. BMC systems biology. 2012;6:60

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 22682214

View Full Text