Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Secretion of ecdysteroid molting hormones by crustacean Y-organs is suppressed by molt-inhibiting hormone (MIH). The suppressive effect of MIH on ecdysteroidogenesis is mediated by one or more cyclic nucleotide second messengers. In addition, existing data indicate that ecdysteroidogenesis is positively regulated (stimulated) by intracellular Ca(++). Despite the apparent critical role of calcium in regulating ecdysteroidogenesis, the level of Ca(++) in Y-organ cells has not been previously measured during a natural molting cycle for any crustacean species. In studies reported here, a fluorescent calcium indicator (Fluo-4) was used to measure Ca(++) levels in Y-organs during a molting cycle of the blue crab, Callinectes sapidus. Mean calcium fluorescence increased 5.8-fold between intermolt (C4) and stage D3 of premolt, and then dropped abruptly, reaching a level in postmolt (A) that was not significantly different from that in intermolt (P>0.05). The level of ecdysteroids in hemolymph of Y-organ donor crabs (measured by radioimmunoassay) showed an overall pattern similar to that observed for calcium fluorescence, rising from 2.9 ng/mL in intermolt to 357.1 ng/mL in D3 (P<0.05), and then dropping to 55.3 ng/mL in D4 (P<0.05). The combined results are consistent with the hypothesis that ecdysteroidogenesis is stimulated by an increase in intracellular Ca(++). Copyright © 2012 Elsevier Inc. All rights reserved.

Citation

Hsiang-Yin Chen, Richard M Dillaman, Robert D Roer, R Douglas Watson. Stage-specific changes in calcium concentration in crustacean (Callinectes sapidus) Y-organs during a natural molting cycle, and their relation to the hemolymphatic ecdysteroid titer. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology. 2012 Sep;163(1):170-3


PMID: 22683690

View Full Text