Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The purpose of the present work was to elaborate an optimized transdermal therapeutic system for diflunisal. Selection of suitable ingredients was done via solubility and phase behavior studies. Composition of microemulsion (ME) systems consisting of butyl lactate, Brij(®) 97, Transcutol(®) and water was optimized using augmented simplex lattice mixture design. The independent variables selected were the percentages of butyl lactate, surfactant mixture and water. The dependent variables were refractive index, pH, conductivity, viscosity, drug solubility in the ME formulation and the ex vivo skin permeation flux. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The statistical validity of the polynomials was established. Optimized formulation factors were selected by desirability approach. The optimized ME formulation was converted into gel using Carbomer(®) 934. The microemulsion based gel (MBG) showed better spreadability and 5.07-fold increase in the transdermal flux than Carbomer(®) 934 gel. The in vivo antihyperalgesia assay performed on mice showed significant reduction of the licking time in the treated group compared to the control group. This demonstrated the reliability of the simplex lattice statistical design for predicting optimum ME formulation. The developed MBG proved its in vivo efficiency for transdermal delivery of diflunisal.

Citation

Marwa Ahmed Sallam, Adel Mohamed Motawaa, Sana Mohamed Mortada. A modern approach for controlled transdermal delivery of diflunisal: optimization and in vivo evaluation. Drug development and industrial pharmacy. 2013 Apr;39(4):600-10

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22697341

View Full Text