Correlation Engine 2.0
Clear Search sequence regions


  • adult (1)
  • bpm (1)
  • cold (8)
  • heart rate (1)
  • humans (1)
  • melatonin (6)
  • saliva (1)
  • Sizes of these terms reflect their relevance to your search.

    To study the effect of post-exercise cold water immersion (CWI) on core temperature and melatonin responses, 10 male cyclists completed two evening (~1800 hours) cycling trials followed by a 15-min CWI (14 °C) or warm water immersion (WWI; 34 °C), and were then monitored for 90 min post-immersion. The exercise trial involved 15 min at 75 % peak power, followed by a 15 min time trial. Core (rectal) temperature was not different between the two conditions pre-exercise (~37.4 °C), post-exercise (~39 °C) or immediately post-immersion (~37.7 °C), but was significantly (p < 0.05) below pre-exercise levels at 60 and 90 min post-immersion in both conditions. Core temperature was significantly lower after CWI than WWI at 30 min (36.84 ± 0.24 vs. 37.42 ± 0.40 °C, p < 0.05) and 90 min (36.64 ± 0.24 vs. 36.95 ± 0.43 °C, p < 0.05) post-immersion. Salivary melatonin levels significantly increased (p < 0.05) from post-exercise (~5 pM) to 90 min post-immersion (~8.3 pM), but were not different between conditions. At 30 and 90 min post-immersion heart rate was significantly lower (~5-10 bpm, p < 0.01) after CWI than WWI. These results show that undertaking either CWI or WWI post-exercise in the evening lowers core temperature below baseline for at least 90 min; however, the magnitude of decrease is significantly greater following CWI. The usual evening increase in melatonin is unaffected by exercise or post-exercise water immersion undertaken between ~1800 and ~2000 hours.

    Citation

    Elisa Robey, Brian Dawson, Shona Halson, Carmel Goodman, Warren Gregson, Peter Eastwood. Post-exercise cold water immersion: effect on core temperature and melatonin responses. European journal of applied physiology. 2013 Feb;113(2):305-11

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 22706550

    View Full Text