Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In vitro and in vivo results are presented demonstrating that superoxide reductase (SOR) from the air-sensitive oral spirochete, Treponema denticola (Td), is a principal enzymatic scavenger of superoxide in this organism. This SOR contains the characteristic non-heme [Fe(His)(4)Cys] active sites. No other metal-binding domain has been annotated for Td SOR. However, we found that Td SOR also accommodates a [Fe(Cys)(4)] site whose spectroscopic and redox properties resemble those in so-called 2Fe-SORs. Spectroscopic comparisons of the wild type and engineered Cys → Ser variants indicate that three of the Cys ligands correspond to those in [Fe(Cys)(4)] sites of "canonical" 2Fe-SORs, whereas the fourth Cys ligand residue has no counterpart in canonical 2Fe-SORs or in any other known [Fe(Cys)(4)] protein. Structural modeling is consistent with iron ligation of the "noncanonical" Cys residue across subunit interfaces of the Td SOR homodimer. The Td SOR was isolated with only a small percentage of [Fe(Cys)(4)] sites. However, quantitative formation of stable [Fe(Cys)(4)] sites was readily achieved by exposing the as-isolated protein to an iron salt, a disulfide reducing agent and air. The disulfide/dithiol status and iron occupancy of the Td SOR [Fe(Cys)(4)] sites could, thus, reflect intracellular redox status, particularly during periods of oxidative stress.

Citation

Jonathan D Caranto, Linda L Gebhardt, Charles E MacGowan, Ronald J Limberger, Donald M Kurtz. Treponema denticola superoxide reductase: in vivo role, in vitro reactivities, and a novel [Fe(Cys)(4)] site. Biochemistry. 2012 Jul 17;51(28):5601-10

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22715932

View Full Text