Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Magnetic carbon nanoparticles with core/shell structure (Fe3C/Fe@C) and large surface areas were synthesized via hydrothermal method followed with heat treatment under N2 atmosphere. The adsorbent has strongly magnetic cores and graphitized carbon shell. The removal efficiency of chlortetracycline (CTC) from aquatic environment by Fe3C/Fe@C was investigated. The results showed that Fe3C/Fe@C exhibited ultrahigh adsorption ability to CTC. The adsorption behavior of CTC on FeC/Fe@C fitted the pseudo-second-order kinetic model, and the adsorption equilibrium was achieved within 24 h. The adsorption ability of CTC increased with solution pH at pH 3.5-7.5, but decreased with further increase of pH (pH 7.5-8.5). CTC adsorption decreased with solution temperature and increased with ionic strength. As the concentration of coexisting humic acid in solution ranged in 10-50 mg x L(-1), the adsorption ability of CTC on Fe3C/Fe@C was only decreased by 10%-20%. Under the optimal conditions (pH = 7.5, T = 293 K), the maximum adsorption capacity of CTC on Fe3C/Fe@C calculated by Langmuir was 909 mg x g(-1), which was significantly higher than those obtained on sediment or minerals. More importantly, Fe3C/Fe@C adsorbed with CTC can be collected from water sample under a magnetic field rapidly for special disposal, which avoids secondary pollution of water. These results indicate that Fe3C/Fe@C is a potentially efficient, green adsorbent for removal of tetracycline antibiotics from aquatic environment.


Yi-Xuan Wang, Di Zhang, Hong-Yun Niu, Zhao-Fu Meng, Ya-Qi Cai. Synthesis of core/shell structured magnetic carbon nanoparticles and its adsorption ability to chlortetracycline in aquatic environment]. Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui.]. 2012 Apr;33(4):1234-40

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 22720571

View Full Text