Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Hydrogenases are of great interest due to their potential use in H(2)-based technology. However, most hydrogenases are highly sensitive to O(2), which have been the major bottleneck in hydrogenase studies. Here we report an O(2)-stable membrane-bound [NiFe]hydrogenase (MBH) purified from a newly isolated strain, S-77. According to the 16S rRNA gene sequence and phylogenetic analysis of the strain S-77, it belongs to the genus of Citrobacter. In vitro experiments using the cytoplasmic membrane of strain S-77 suggested that a cytochrome b acts as the physiological electron acceptor of the MBH. The purified MBH was composed of a dimer of heterodimers, consisting of two distinct subunits with the molecular weights of 58.5 and 38.5 kDa. The enzyme showed a specific activity for H(2)-oxidation of 661 U/mg, which is 35-fold greater than that for H(2)-production of 18.7 U/mg. Notably, the MBH showed a remarkable O(2)-stability, maintaining almost 95% of its original activity even after incubation for 30 h in air at 4°C. These results suggest that the O(2)-stable MBH may play an important role in the H(2)-metabolic pathway under the aerobic conditions of Citrobacter sp. S-77. This is the first report of the purification and biochemical characterization of an O(2)-stable MBH from the genus of Citrobacter. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.


Shigenobu Eguchi, Ki-Seok Yoon, Seiji Ogo. O2-stable membrane-bound [NiFe]hydrogenase from a newly isolated Citrobacter sp. S-77. Journal of bioscience and bioengineering. 2012 Nov;114(5):479-84

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 22721689

View Full Text