Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

As confidence in gas biofiltration efficacy grows, ever more complex malodorant and toxic molecules are ameliorated. In parallel, for many countries, emission control legislation becomes increasingly stringent to accommodate both public health and climate change imperatives. Effective gas biofiltration in biofilters and biotrickling filters depends on three key bioreactor variables: the support medium; gas molecule solubilization; and the catabolic population. Organic and inorganic support media, singly or in combination, have been employed and their key criteria are considered by critical appraisal of one, char. Catabolic species have included fungal and bacterial monocultures and, to a lesser extent, microbial communities. In the absence of organic support medium (soil, compost, sewage sludge, etc.) inoculum provision, a targeted enrichment and isolation program must be undertaken followed, possibly, by culture efficacy improvement. Microbial community process enhancement can then be gained by comprehensive characterization of the culturable and total populations. For all species, support medium attachment is critical and this is considered prior to filtration optimization by water content, pH, temperature, loadings, and nutrients manipulation. Finally, to negate discharge of fungal spores, and/or archaeal and/or bacterial cells, capture/destruction technologies are required to enable exploitation of the mineralization product CO(2).

Citation

T Komang Ralebitso-Senior, Eric Senior, Renzo Di Felice, Kirsty Jarvis. Waste gas biofiltration: advances and limitations of current approaches in microbiology. Environmental science & technology. 2012 Aug 21;46(16):8542-73

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22746978

View Full Text