Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The aim of this study was to investigate the role of serotonin and protein 53 (p53) status of the cells in the radiation-induced bystander effects (RIBE). The radiation-induced bystander response was investigated in human MCF-7 breast cancer cells and human HCT116 colorectal cancer cells employing medium-transfer experiments and micronuclei (MN) induction as an end-point. Irradiated cell conditioned medium (ICCM) from cells exposed to α-particle or γ-radiation was filtered and transferred to unirradiated cells 2 h following irradiation. MCF-7 cells were irradiated with 0.5 Gy α-particles, while HCT116 p53(+/+) and HCT116 p53(-/-) cells were irradiated with 0.5 Gy γ-radiation. Bystander MCF-7 cells, recipient of ICCM from 0.5 Gy α-particle irradiated MCF-7 cells grown in high serotonin conditions showed a modest but significant increase in MN, while MCF-7 cells receiving ICCM with low serotonin levels did not show any bystander effect. Added serotonin (100 ng/ml) led to a bystander effectin HCT116 p53(-/-) cells recipient of ICCM from 0.5 Gy γ-irradiated HCT116 p53(+/+) cells, but had no effect when the ICCM was from γ-irradiated HCT116 P53(-/-) cells. The results indicate that serotonin levels in the medium play a role in the RIBE and that there may be an interaction between the role of serotonin and the p53 status of the irradiated cells.

Citation

Erta Kalanxhi, Jostein Dahle. The role of serotonin and p53 status in the radiation-induced bystander effect. International journal of radiation biology. 2012 Oct;88(10):773-6

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22803606

View Full Text