Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The prevalence and proliferation of antibiotic resistant bacteria is profoundly important to human health, but the extent to which aquatic environments contribute toward the dissemination of antibiotic resistant genes (ARGs) is poorly understood. The prevalence of 24 ARGs active against eight antibiotic classes (β-lactams, aminoglycosides, glycopeptides, chloramphenicols, tetracycline, macrolides, trimethoprim, and sulfonamides) was evaluated in surface water samples collected from Germany and Australia with culture independent methods. The ARGs most frequently detected both in Germany and Australia were sulI, sulII (77-100%), and dfrA1 (43-55%) which code for resistance to sulfonamide and trimethoprim. Macrolides resistance gene ermB was relatively more prevalent in the surface water from Germany (68%) than Australia (18%). In contrast, the chloramphenicol resistance gene catII was more frequently detected in Australia (64%) than Germany (9%). Similarly, β-lactams resistance gene ampC was more prevalent in the samples from Australia (36%) than Germany (19%). This study highlights wide distribution of ARGs for sulfonamide, trimethoprim, macroline, β-lactams and chloramphenicol in the aquatic ecosystems. Aquatic ecosystems can therefore be reservoirs of ARGs genes which could potentially be transferred from commensal microorganisms to human pathogens.

Citation

C Stoll, J P S Sidhu, A Tiehm, S Toze. Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environmental science & technology. 2012 Sep 4;46(17):9716-26

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22846103

View Full Text