Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In some pathological conditions carnitine concentration is high while in others it is low. In both cases,cardiac arrhythmias can occur and lead to sudden cardiac death. It has been proposed that in ischaemia, acylcarnitine (acyl-CAR), but not carnitine, is involved in arrhythmias through modulation of ionic currents. We studied the effects of acyl-CARs on hERG, K(IR)2.1 and K(v)7.1/minK channels (channels responsible for I(KR), I(K1) and I(KS) respectively). HEK293 cells stably expressing hERG, K(IR)2.1 or Kv7.1/minK were studied using the patch clamp technique. Free carnitine (CAR) and acyl-CAR derivatives from medium- (C8 and C10) and long-chain (C16 and C18:1) fatty acids were applied intra- and extracellularly at different concentrations. For studies on hERG, C16 and C18:1 free fatty acid were also used. Extracellular long-chain (LCAC), but not medium-chain, acyl-CAR,induced an increase of I(hERG) amplitude associated with a dose-dependent speeding of deactivation kinetics. They had no effect on K(IR)2.1 or Kv7.1/minK currents.Computer simulations of these effects were consistent with changes in action potential profile. CONCLUSIONS AND APPLICATIONS: Extracellular LCAC tonically regulates I(hERG) amplitude and kinetics under physiological conditions. This modulation may contribute to the changes in action potential duration that precede cardiac arrhythmias in ischaemia, diabetes and primary systemic carnitine deficiency.

Citation

Fabio Ferro, Aude Ouillé, Truong-An Tran, Pierre Fontanaud, Patrick Bois, Dominique Babuty, François Labarthe, Jean-Yves Le Guennec. Long-chain acylcarnitines regulate the hERG channel. PloS one. 2012;7(7):e41686

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22848566

View Full Text