Wurentuya Jaiseng, Yue Fang, Yan Ma, Reiko Sugiura, Takayoshi Kuno
PloS one 2012We previously identified Cis4, a zinc transporter belonging to the cation diffusion facilitator protein family, and we demonstrated that Cis4 is implicated in Golgi membrane trafficking in fission yeast. Here, we identified three glycosylphosphatidylinositol (GPI)-anchored proteins, namely Ecm33, Aah3, and Gaz2, as multicopy suppressors of the MgCl(2)-sensitive phenotype of cis4-1 mutant. The phenotypes of ecm33, aah3 and gaz2 deletion cells were distinct from each other, and Cis4 overexpression suppressed Δecm33 phenotypes but did not suppress Δaah3 defects. Notably, green fluorescent protein-tagged Ecm33, which was observed at the cell surface in wild-type cells, mostly localized as intracellular dots that are presumed to be the Golgi and endosomes in membrane-trafficking mutants, including Δapm1, ypt3-i5, and chc1-1 mutants. Interestingly, all these membrane-trafficking mutants showed hypersensitivity to BE49385A, an inhibitor of Its8 that is involved in GPI-anchored protein synthesis. Taken together, these results suggest that GPI-anchored proteins are transported through a clathrin-mediated post-Golgi membrane trafficking pathway and that zinc transporter Cis4 may play roles in membrane trafficking of GPI-anchored proteins in fission yeast.
Wurentuya Jaiseng, Yue Fang, Yan Ma, Reiko Sugiura, Takayoshi Kuno. Studies on the roles of clathrin-mediated membrane trafficking and zinc transporter Cis4 in the transport of GPI-anchored proteins in fission yeast. PloS one. 2012;7(7):e41946
PMID: 22848669
View Full Text