Correlation Engine 2.0
Clear Search sequence regions


Response surface methodology was applied in optimizing the asymmetric bioreduction of (4S)-(+)-carvone to dihydrocarvone (with low incidence of unsought side reactions) by using whole-cells of Cryptococcus gastricus. A factorial design (2(5)) including five independent variables was performed: X(1)=incubation time; X(2)=pH; X(3)=amount of whole-cells; X(4)=concentration of (4S)-(+)-carvone; X(5)=concentration of cofactor-recycling system. The utilization of glucose and glycerol as cofactor-recycling systems was checked. On the basis of the results of factorial design, three independent variables (X(1), X(3) and X(4)) out of five were further selected for performing a central composite design (CCD). First and second order polynomial equations obtained by CCD were used to select the optimal values of independent variables in order to maximize the bioreduction yield of (4S)-(+)-carvone and, at the same time, to minimize the occurrence of side reactions (i.e. further reduction of dihydrocarvone to dihydrocarveol). Copyright © 2012 Elsevier Ltd. All rights reserved.

Citation

Marta Goretti, Eva Branda, Benedetta Turchetti, Maria Rita Cramarossa, Andrea Onofri, Luca Forti, Pietro Buzzini. Response surface methodology as optimization strategy for asymmetric bioreduction of (4S)-(+)-carvone by Cryptococcus gastricus. Bioresource technology. 2012 Oct;121:290-7

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22858498

View Full Text