Correlation Engine 2.0
Clear Search sequence regions


We describe a cell-based, microplate colorimetric screen for anti-hepatitis C virus (HCV) drugs that exploits the HCV-JFH1 viral culture system. Antiviral activity was assessed by measuring protection against the HCV-JFH1-induced cytopathic effect (CPE) in Huh7.5.1 cells using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) viability assay. The use of serum-free medium substantially sensitized Huh7.5.1 cells to HCV-induced CPE, causing sufficient cell death to perform colorimetric assays for anti-HCV activity in 96-well plates. As a proof of concept, we carried out a pilot screen of an inhibitor library and identified cyclosporin A and tamoxifen, two compounds with reported anti-HCV activity. Using the assay, we discovered the anti-HCV properties of the plant flavonoids epigallocatechin gallate (EGCG) and 7,8-benzoflavone (α-naphthoflavone). Other gallate-type catechins and flavones also displayed anti-HCV activity, but 5,6-benzoflavone (β-naphthoflavone), flavanone, and non-gallate catechins were inactive. EGCG apparently acted mainly on HCV entry, although it may also block other steps. In contrast, 7,8-benzoflavone was presumed to inhibit later stages of the HCV life cycle. This assay is simple, reliable and cost-effective; does not require any specially engineered cell lines or viruses; and should be useful in the identification of compounds with anti-HCV activity.

Citation

Hidesuke Fukazawa, Tetsuro Suzuki, Takaji Wakita, Yuko Murakami. A cell-based, microplate colorimetric screen identifies 7,8-benzoflavone and green tea gallate catechins as inhibitors of the hepatitis C virus. Biological & pharmaceutical bulletin. 2012;35(8):1320-7

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22863932

View Full Text