Correlation Engine 2.0
Clear Search sequence regions


Nanometer-sized monodisperse polystyrene nanospheres (PS NS) were designed as an opal template for the formation of three-dimensionally continuous poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films. The resultant films were successfully applied as the anode buffer layer (ABL) to produce highly efficient polymer solar cells (PSCs) with enhanced stability. The conductivity of the PS NS-PEDOT:PSS films was maintained up to ø(PS) = 0.75-0.80, indicating that the formation of continuous PEDOT:PSS films using PS NS templates was successful. To demonstrate the applicability of the PS NS-PEDOT:PSS film for organic electronics, the PS NS-PEDOT:PSS films were used as ABLs in two different PSCs: P3HT:PCBM and P3HT:OXCBA. The photovoltaic performances of both PSCs were maintained up to ø(PS) = 0.8. In particular, the power conversion efficiency of the P3HT:OXCBA PSC with a PS NS-PEDOT:PSS ABL (ø(PS) = 0.8) was greater than 5% and the air stability of the device was significantly enhanced.

Citation

Dong Jin Kang, Hyunbum Kang, Ki-Hyun Kim, Bumjoon J Kim. Nanosphere templated continuous PEDOT:PSS films with low percolation threshold for application in efficient polymer solar cells. ACS nano. 2012 Sep 25;6(9):7902-9

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22880844

View Full Text