Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Caveolin plays an essential role in the formation of characteristic surface pits, caveolae, which cover the surface of many animal cells. The fundamental principles of caveola formation are only slowly emerging. Here we show that caveolin expression in a prokaryotic host lacking any intracellular membrane system drives the formation of cytoplasmic vesicles containing polymeric caveolin. Vesicle formation is induced by expression of wild-type caveolins, but not caveolin mutants defective in caveola formation in mammalian systems. In addition, cryoelectron tomography shows that the induced membrane domains are equivalent in size and caveolin density to native caveolae and reveals a possible polyhedral arrangement of caveolin oligomers. The caveolin-induced vesicles or heterologous caveolae (h-caveolae) form by budding in from the cytoplasmic membrane, generating a membrane domain with distinct lipid composition. Periplasmic solutes are encapsulated in the budding h-caveola, and purified h-caveolae can be tailored to be targeted to specific cells of interest. Copyright © 2012 Elsevier Inc. All rights reserved.

Citation

Piers J Walser, Nicholas Ariotti, Mark Howes, Charles Ferguson, Richard Webb, Dominik Schwudke, Natalya Leneva, Kwang-Jin Cho, Leanne Cooper, James Rae, Matthias Floetenmeyer, Viola M J Oorschot, Ulf Skoglund, Kai Simons, John F Hancock, Robert G Parton. Constitutive formation of caveolae in a bacterium. Cell. 2012 Aug 17;150(4):752-63

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22901807

View Full Text