Correlation Engine 2.0
Clear Search sequence regions


During mitosis, the Golgi membranes in mammalian cells undergo a continuous disassembly process and generate mitotic fragments that are distributed into the daughter cells and reassembled into new Golgi after mitosis. This disassembly and reassembly process is critical for Golgi biogenesis during cell division, but the underlying molecular mechanism is poorly understood. In this study, we have recapitulated this process using an in vitro assay and analyzed the proteins that are associated with interphase and mitotic Golgi membranes using quantitative proteomics that combines the isobaric tags for relative and absolute quantification approach with OFFGEL isoelectric focusing separation and LC-MALDI-MS/MS. A total of 1,193 Golgi-associated proteins were identified and quantified. These included broad functional categories: Golgi structural proteins, Golgi resident enzymes, SNAREs, Rab GTPases, and secretory and cytoskeletal proteins. More importantly, the combination of the quantitative proteomic approach with Western blot analysis allowed us to unveil 86 proteins with significant changes in abundance under the mitotic condition compared to the interphase condition. Altogether, this systematic quantitative proteomic study revealed candidate proteins of the molecular machinery that controls the Golgi disassembly and reassembly processes in the cell cycle.

Citation

Xuequn Chen, Philip C Andrews, Yanzhuang Wang. Quantitative analysis of liver Golgi proteome in the cell cycle. Methods in molecular biology (Clifton, N.J.). 2012;909:125-40

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22903713

View Full Text