Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Soluble guanylyl cyclase (sGC) plays a central role in nitric oxide (NO)-mediated signal transduction in the cardiovascular, nervous and gastrointestinal systems. Alternative RNA splicing has emerged as a potential mechanism to modulate sGC expression and activity. C-α1 sGC is an alternative splice form that is resistant to oxidation-induced protein degradation and demonstrates preferential subcellular distribution to the oxidized environment of endoplasmic reticulum (ER). Here we report that splicing of C-α1 sGC can be modulated by H(2)O(2) treatment in BE2 neuroblastoma and MDA-MD-468 adenocarcinoma human cells. In addition, we show that the H(2)O(2) treatment of MDA-MD-468 cells selectively decreases protein levels of PTBP1 and hnRNP A2/B1 splice factors identified as potential α1 gene splicing regulators by in silico analysis. We further demonstrate that down-regulation of PTBP1 by H(2)O(2) occurs at the protein level with variable regulation observed in different breast cancer cells. Our data demonstrate that H(2)O(2) regulates RNA splicing to induce expression of the oxidation-resistant C-α1 sGC subunit. We also report that H(2)O(2) treatment selectively alters the expression of key splicing regulators. This process might play an important role in regulation of cellular adaptation to conditions of oxidative stress.

Citation

Gilbert J Cote, Wen Zhu, Anthony Thomas, Emil Martin, Ferid Murad, Iraida G Sharina. Hydrogen peroxide alters splicing of soluble guanylyl cyclase and selectively modulates expression of splicing regulators in human cancer cells. PloS one. 2012;7(7):e41099

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22911749

View Full Text