Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Superoxide (O(2) (-)) is an important reactive oxygen species (ROS), and has an essential role in physiology and pathophysiology. An accurate detection of O(2) (-) is needed to better understand numerous vascular pathologies. In this study, we performed a mechanistic study by using the xanthine oxidase (XOD)/hypoxanthine (HX) assay for O(2) (-) generation and a O(2) (-) sensitive fluorescent dye dihydroethidium (DHE) for O(2) (-) measurement. To quantify O(2) (-) and DHE interactions, we measured fluorescence using a microplate reader. We conducted a detailed reaction kinetic analysis for DHE-O(2) (-) interaction to understand the effect of O(2) (-) self-dismutation and to quantify DHE-O(2) (-) reaction rate. Fluorescence of DHE and 2-hydroethidium (EOH), a product of DHE and O(2) (-) interaction, were dependent on reaction conditions. Kinetic analysis resulted in a reaction rate constant of 2.169 ± 0.059 × 10(3) M(-1) s(-1) for DHE-O(2) (-) reaction that is ~100× slower than the reported value of 2.6 ± 0.6 × 10(5) M(-1) s(-1). In addition, the O(2) (-) self-dismutation has significant effect on DHE-O(2) (-) interaction. A slower reaction rate of DHE with O(2) (-) is more reasonable for O(2) (-) measurements. In this manner, the DHE is not competing with superoxide dismutase and NO for O(2) (-). Results suggest that an accurate measurement of O(2) (-) production rate may be difficult due to competitive interference for many factors; however O(2) (-) concentration may be quantified.

Citation

Juan Chen, Steven C Rogers, Mahendra Kavdia. Analysis of kinetics of dihydroethidium fluorescence with superoxide using xanthine oxidase and hypoxanthine assay. Annals of biomedical engineering. 2013 Feb;41(2):327-37

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22965641

View Full Text