Correlation Engine 2.0
Clear Search sequence regions


Previous behavioral and receptor binding studies on N-phenylpiperazine derivatives by our group indicated that LASSBio-579, LASSBio-580 and LASSBio-581 could be potential antipsychotic lead compounds. The present study identified LASSBio-579 as the most promising among the three compounds, since it was the only one that inhibited apomorphine-induced climbing (5 mg/kg p.o.) and apomorphine-induced hypothermia (15 mg/kg p.o.). Furthermore, LASSBio-579 (0.5 mg/kg p.o.) was effective in the ketamine-induced hyperlocomotion test and prevented the prepulse inhibition deficits induced by apomorphine, DOI and ketamine with different potencies (1 mg/kg, 0.5 mg/kg and 5 mg/kg p.o., respectively). LASSBio-579 also induced a motor impairment, catalepsy and a mild sedative effect but only at doses 3-120 times higher than those with antipsychotic-like effects. In addition, LASSBio-579 (0.5 and 1 mg/kg p.o.) reversed the catalepsy induced by WAY 100,635, corroborating its action on both dopaminergic and serotonergic neurotransmission and pointing to the contribution of 5-HT(1A) receptor activation to its pharmacological profile. Moreover, co-administration of sub-effective doses of LASSBio-579 with sub-effective doses of clozapine or haloperidol prevented the apomorphine-induced climbing without induction of catalepsy. In summary, our results characterize LASSBio-579 as a multi-target ligand active in pharmacological animal models of schizophrenia, confirming that this compound could be included in development programs aiming at a new drug for treating schizophrenia. Copyright © 2012 Elsevier B.V. All rights reserved.

Citation

Gilda Neves, Camila B Antonio, Andresa H Betti, Mariana A Pranke, Carlos A M Fraga, Eliezer J Barreiro, François Noël, Stela M K Rates. New insights into pharmacological profile of LASSBio-579, a multi-target N-phenylpiperazine derivative active on animal models of schizophrenia. Behavioural brain research. 2013 Jan 15;237:86-95

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23000351

View Full Text