Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Serotonin (5-hydroxytryptamine; 5HT) is a favorable substrate for myeloperoxidase and is likely to be oxidized by this heme enzyme during inflammation. In this study, we have investigated how serotonin becomes conjugated to amino acid residues and proteins when it is oxidized by myeloperoxidase. 5HT formed three adducts with N-acetylcysteine (NAC) when it was incubated with myeloperoxidase, xanthine oxidase, and acetaldehyde. One of the adducts was identified as 5HT-NAC, and the others were conjugates of NAC and tryptamine-4,5-dione (TD). There was no evidence for coupling of oxidized serotonin to amine residues. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was exposed to 5HT with the enzymatic system or synthetic TD. Both caused a loss of thiols on GAPDH and covalent attachment of quinones derived from TD to the protein. Biotin-labeled 5HT was used instead of 5HT to confirm the conjugation of 5HT to GAPDH. It was incorporated into the GAPDH when oxidized by myeloperoxidase. Analysis of tryptic peptides of human GAPDH by liquid chromatography with mass spectrometry revealed that an adduct of TD was formed with the peptide containing Cys(152) and Cys(156). Our results indicate that myeloperoxidase can oxidize serotonin to species that form adducts with low molecular weight thiols and cysteine residues in proteins. Low molecular weight conjugates will redox cycle and fuel oxidative stress. Conjugation of serotonin to proteins will affect their function and may provide useful biomarkers of serotonin oxidation during inflammatory events.

Citation

Yoji Kato, Alexander V Peskin, Nina Dickerhof, D Tim Harwood, Anthony J Kettle. Myeloperoxidase catalyzes the conjugation of serotonin to thiols via free radicals and tryptamine-4,5-dione. Chemical research in toxicology. 2012 Nov 19;25(11):2322-32

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23009681

View Full Text