Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The presence of urocortin 3 (UCN3) and CRF2 receptors (CRF2R) has been demonstrated in brain tissue. Nucleus ambiguus (nAmb) is the predominant brain area providing parasympathetic innervation to the heart. On the basis of these reports, it was hypothesized that activation of CRF2Rs in the nAmb may elicit cardiac effects. Experiments were carried out in urethane-anesthetized, artificially ventilated, and adult male Wistar rats. Microinjections of l-glutamate (l-GLU, 5 mM) were used to identify the nAmb. Different concentrations of UCN3 (0.031, 0.062, 0.125, 0.25, and 0.5 mM) microinjected into the nAmb elicited decreases in heart rate (HR) (5.3 ± 1, 22 ± 3.3, 38 ± 4.9, 45.7 ± 2.7, and 27.3 ± 2.3 bpm, respectively). The volume of all microinjections was 30 nl. Blood pressure changes concomitant with decreases in HR were not observed. Bradycardia elicited by microinjections of UCN3 (0.25 mM; maximally effective concentration) into the nAmb was significantly (P < 0.05) attenuated by microinjections of selective CRF2R antagonists (K41498, 0.5 mM, and astressin 2B, 0.25 mM) at the same site. Bilateral vagotomy abolished the bradycardic responses to UCN3. These results indicated that activation of CRF2Rs in the nAmb by UCN3 elicited bradycardia, which was vagally mediated. UCNs have been reported to exert cardioprotective effects in heart failure and ischemia/reperfusion injury. In this situation, centrally induced bradycardia by UCN3 would be beneficial. The results of the present investigation provide a platform for future studies on the role of CRF2Rs in the nAmb in pathological states such as heart failure.

Citation

Vineet C Chitravanshi, Kazumi Kawabe, Hreday N Sapru. Bradycardic effects of microinjections of urocortin 3 into the nucleus ambiguus of the rat. American journal of physiology. Regulatory, integrative and comparative physiology. 2012 Nov 15;303(10):R1023-30

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23019211

View Full Text