Correlation Engine 2.0
Clear Search sequence regions


Mesenchymal stem cells (MSCs) from bone marrow (BM) are widely used for bone and less for cartilage tissue regeneration due to their self-renewal and differentiating properties into osteogenic or chondrogenic lineages. This review considers the last decade of clinical trials involving a two-step procedure, by expanding in vitro MSCs from BM, or the so called "one-step" procedure, using BM in toto or BM concentrate, for the regeneration of cartilage and osteochondral tissue defects. The following conclusions were drawn: (1) Cartilage defects that can be repaired by the two-step technique are about twice the size as those where the one-step method is used; (2) the two-step procedure is especially used for the treatment of osteoarthritic lesions, whereas the one-step procedure is used for osteochondral defects; (3) the number of transplanted cells ranges between 3.8×10(6) and 11.2×10(6) cells/mL, and the period of cell culture expansion of implanted MSCs varies widely with regard to the two-step procedure; (4) hyaluronic or collagenic scaffolds are used in all the clinical studies analyzed for both techniques; (5) the follow-up of the two-step procedure is longer than that of the one-step method, despite having a lower number of patients; and, finally, (6) the mean age of the patients (about 39 years old) is similar in both procedures. Clinical results underline the safety and good and encouraging outcomes for the use of MSCs in clinics. Although more standardized procedures are required, the length of follow-up and the number of patients observed should be augmented, and the design of trials should be implemented to achieve evidence-based results.

Citation

Francesca Veronesi, Gianluca Giavaresi, Matilde Tschon, Veronica Borsari, Nicolò Nicoli Aldini, Milena Fini. Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem cells and development. 2013 Jan 15;22(2):181-92

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23030230

View Full Text