Correlation Engine 2.0
Clear Search sequence regions


The primary pathway of lysine degradation in pigs presumably depends on the bifunctional protein α-aminoadipate δ-semialdehyde synthase (AASS), which contains lysine α-ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH) activities. In liver, AASS is restricted to the mitochondrial matrix and lysine is presumptively transported through the plasma membrane by a cationic AA transporter (CAT1/2) and through the inner mitochondrial membrane by 1 or both mitochondrial ornithine transporters (ORC-1/ORC-2). Lysyl oxidase (LO) may represent an alternative pathway of lysine oxidation. The objective of this experiment was to analyze the distribution of indices of lysine catabolism in various pig tissues. We assessed LKR, SDH, and LO activities, lysine oxidation, mRNA abundance of LKR, CAT1/2, and ORC1/2, and AASS protein abundance (via SDH antibody) in liver, heart, kidney medulla and cortex, triceps, longissimus, whole intestine, enterocytes, and intestine stripped of enterocytes in 10 growing pigs, weighing ∼25 kg. The LKR activity differed across tissues (P<0.001) and was greatest in liver, intestine, and kidney samples, and LKR mRNA abundance (P<0.001) was greatest in liver; although, LKR activity and mRNA abundance were detected in all other tissues. Activity of SDH (P<0.001) and SDH mRNA abundance (P<0.001) were affected by tissue and were greatest in liver compared with all other tissues analyzed. The AASS protein abundance (P<0.001) was greatest in whole intestine and liver. Activity of LO (P<0.0001) was greatest in muscle samples. The abundance of ORC-1 (P<0.001) and ORC-2 mRNA (P<0.001) differed among tissues, and ORC-1 was greatest in liver, kidney, and intestinal preparations, and ORC-2 mRNA abundance was greatest in liver and intestine. Interestingly, LKR activity was correlated with ORC-1 (r=0.32, P<0.05) and ORC-2 (r=0.41, P<0.05) expression. The expression of CAT-1 was uniform in all tissues, whereas CAT-2 (P<0.01) was greatest in liver. In conclusion, these data indicate that extra-hepatic tissues contribute to lysine catabolism as do enzymes other than LKR.

Citation

S K Gatrell, L E Berg, J T Barnard, J G Grimmett, K M Barnes, K P Blemings. Tissue distribution of indices of lysine catabolism in growing swine. Journal of animal science. 2013 Jan;91(1):238-47

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23048139

View Full Text