Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Predicting the consequences of predator biodiversity loss on prey requires an understanding of multiple predator interactions. Predators are often assumed to have independent and additive effects on shared prey survival; however, multiple predator effects can be non-additive if predators foraging together reduce prey survival (risk enhancement) or increase prey survival through interference (risk reduction). In marine communities, juvenile reef fish experience very high mortality from two predator guilds with very different hunting modes and foraging domains-benthic and pelagic predator guilds. The few previous predator manipulation studies have found or assumed that mortality is independent and additive. We tested whether interacting predator guilds result in non-additive prey mortality and whether the detection of such effects change over time as prey are depleted. To do so, we examined the roles of benthic and pelagic predators on the survival of a juvenile shoaling zooplanktivorous temperate reef fish, Trachinops caudimaculatus, on artificial patch reefs over 2 months in Port Phillip Bay, Australia. We observed risk enhancement in the first 7 days, as shoaling behaviour placed prey between predator foraging domains with no effective refuge. At day 14 we observed additive mortality, and risk enhancement was no longer detectable. By days 28 and 62, pelagic predators were no longer significant sources of mortality and additivity was trivial. We hypothesize that declines in prey density led to reduced shoaling behaviour that brought prey more often into the domain of benthic predators, resulting in limited mortality from pelagic predators. Furthermore, pelagic predators may have spent less time patrolling reefs in response to declines in prey numbers. Our observation of the changing interaction between predators and prey has important implications for assessing the role of predation in regulating populations in complex communities.

Citation

John R Ford, Stephen E Swearer. Shoaling behaviour enhances risk of predation from multiple predator guilds in a marine fish. Oecologia. 2013 Jun;172(2):387-97

Expand section icon Mesh Tags


PMID: 23124272

View Full Text