Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Drought limits plant growth and threatens crop productivity. A barley (Hordeum vulgare) ethylene imine-induced monogenic recessive mutant cer-zv, which is sensitive to drought, was characterized and genetically mapped in the present study. Detached leaves of cer-zv lost 34.2 % of their initial weight after 1 h of dehydration. The transpiration was much higher in cer-zv leaves than in wild-type leaves under both light and dark conditions. The stomata of cer-zv leaves functioned normally, but the cuticle of cer-zv leaves showed increased permeability to ethanol and toluidine blue dye. There was a 50-90 % reduction in four major cutin monomers, but no reduction in wax loads was found in the cer-zv mutant as compared with the wild type. Two F(2) mapping populations were established by the crosses of 23-19 × cer-zv and cer-zv × OUH602. More polymorphisms were found in EST sequences between cer-zv and OUH602 than between cer-zv and 23-19. cer-zv was located in a pericentromeric region on chromosome 4H in a 10.8 cM interval in the 23-19 × cer-zv map based on 186 gametes tested and a 1.7 cM interval in the cer-zv × OUH602 map based on 176 gametes tested. It co-segregated with EST marker AK251484 in both maps. The results indicated that the cer-zv mutant is defective in cutin, which might be responsible for the increased transpiration rate and drought sensitivity, and that the F(2) of cer-zv × OUH602 might better facilitate high resolution mapping of cer-zv.

Citation

Chao Li, Aidong Wang, Xiaoying Ma, Mohammad Pourkheirandish, Shun Sakuma, Ning Wang, Shunzong Ning, Eviatar Nevo, Christiane Nawrath, Takao Komatsuda, Guoxiong Chen. An eceriferum locus, cer-zv, is associated with a defect in cutin responsible for water retention in barley (Hordeum vulgare) leaves. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2013 Mar;126(3):637-46

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23124432

View Full Text