Correlation Engine 2.0
Clear Search sequence regions

Systemic lupus erythematosus (SLE) is the prototype of human autoimmune disease in which various inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1, IL-6 and interferon (IFN) play crucial pathogenic roles. The production of these cytokines is responsible for the mitogen-activated protein kinases (MAPKs), which can also generate mitogen-activated protein kinases phosphatases (MKPs). MKP-1, a prototypical member of the MKP family that can influence outcomes of autoimmune diseases and reduce the inflammatory cytokines by dephosphorylation of p38 and JNK MAPK, plays a critical role in the expression of inflammatory mediators at transcriptional and post-transcriptional levels. MicroRNA-101 (miR) is a small non-coding RNA that regulates the MAPK response by targeting MKP-1 mRNA 3'-UTR, and affects the secretion of the downstream inflammatory cytokines. However, the interaction among the above three in the pathogenesis of SLE has not previously been reported. This review discusses the current understanding of the role of the MAPK/MKP/miR-101 axis in regulating immune responses and the pathogenesis of SLE to provide new ideas for clinical treatment of SLE.


J Yang, Y-W Lu, M-M Lu, R-X Leng, H-F Pan, D-Q Ye. MicroRNA-101, mitogen-activated protein kinases and mitogen-activated protein kinases phosphatase-1 in systemic lupus erythematosus. Lupus. 2013 Feb;22(2):115-20

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 23139385

View Full Text