Correlation Engine 2.0
Clear Search sequence regions

Vitamin A compounds are promising for cancer prevention and reducing risk of recurrence. Herein we have evaluated the combination of all-trans-retinoic acid (RA), a vitamin A metabolite, and alpha-galactosylceramide (αGalCer), a lipid immune activator, in Balb/C mice inoculated with syngeneic 4T1 breast tumor cells on reduction in breast tumor growth and lung metastasis. In Balb/c inoculated with the syngenic 4T1 primary tumor, and administered dendritic cells treated with RA + αGalCer, the size of the primary tumor and the number of lung metastatic foci were reduced. When 4T1 cells were introduced into the circulation as a model of hematogenous spread of tumor cells and RA and αCalCer were administered directly to mice without dendritic cells, lung metastatic foci were reduced 70% (P < 0.05), whereas each agent alone resulted in an intermediate decrease. Concomitantly, the expression of matrix metalloproteinases (MMP), membrane type-1 (MT1)-MMP and MMP3, were reduced by RA + αGalCer in lung. MMP3 protein was also reduced in plasma and culture supernatants from RA + αGalCer-treated 4T1 cells. Together, our results provide new evidence that a nutritional-immunological combination of RA + αGalCer may be promising for preventing or slowing the growth of metastatic foci, and suggest reduced MMP production as a possible mechanism.


Qiuyan Chen, A Catharine Ross. All-trans-retinoic acid and the glycolipid α-galactosylceramide combined reduce breast tumor growth and lung metastasis in a 4T1 murine breast tumor model. Nutrition and cancer. 2012;64(8):1219-27

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 23163850

View Full Text