Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Rifampin resistance in clinical isolates of Mycobacterium tuberculosis arises primarily through the selection of bacterial variants harboring mutations in the 81-bp rifampin resistance-determining region of the rpoB gene. While these mutations were shown to infer a fitness cost in the absence of antibiotic pressure, compensatory mutations in rpoA and rpoC were identified which restore the fitness of rifampin-resistant bacteria carrying mutations in rpoB. To investigate the epidemiological relevance of these compensatory mutations, we analyzed 286 drug-resistant and 54 drug-susceptible clinical M. tuberculosis isolates from the Western Cape, South Africa, a high-incidence setting of multidrug-resistant tuberculosis. Sequencing of a portion of the RpoA-RpoC interaction region of the rpoC gene revealed that 23.5% of all rifampin-resistant isolates tested carried a nonsynonymous mutation in this region. These putative compensatory mutations in rpoC were associated with transmission, as 30.8% of all rifampin-resistant isolates with an IS6110 restriction fragment length polymorphism (RFLP) pattern belonging to a recognized RFLP cluster harbored putative rpoC mutations. Such mutations were present in only 9.4% of rifampin-resistant isolates with unique RFLP patterns (P < 0.01). Moreover, these putative compensatory mutations were associated with specific strain genotypes and the rpoB S531L rifampin resistance mutation. Among isolates harboring this rpoB mutation, 44.1% also harbored rpoC mutations, while only 4.1% of the isolates with other rpoB mutations exhibited mutations in rpoC (P < 0.001). Our study supports a role for rpoC mutations in the transmission of multidrug-resistant tuberculosis and illustrates how epistatic interactions between drug resistance-conferring mutations, compensatory mutations, and different strain genetic backgrounds might influence compensatory evolution in drug-resistant M. tuberculosis.


M de Vos, B Müller, S Borrell, P A Black, P D van Helden, R M Warren, S Gagneux, T C Victor. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrobial agents and chemotherapy. 2013 Feb;57(2):827-32

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 23208709

View Full Text