Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Live attenuated vaccines are usually generated by mutation of genes encoding virulence factors. "Virmugen" is coined here to represent a gene that encodes for a virulent factor of a pathogen and has been proven feasible in animal models to make a live attenuated vaccine by knocking out this gene. Not all virulence factors are virmugens. VirmugenDB is a web-based virmugen database (http://www.violinet.org/virmugendb). Currently, VirmugenDB includes 225 virmugens that have been verified to be valuable for vaccine development against 57 bacterial, viral, and protozoan pathogens. Bioinformatics analysis has revealed significant patterns in virmugens. For example, 10 Gram-negative and 1 Gram-positive bacterial aroA genes are virmugens. A sequence analysis has revealed at least 50% of identities in the protein sequences of the 10 Gram-negative bacterial aroA virmugens. As a pathogen case study, Brucella virmugens were analyzed. Out of 15 verified Brucella virmugens, 6 are related to carbohydrate or nucleotide transport and metabolism, and 2 involving cell membrane biogenesis. In addition, 54 virmugens from 24 viruses and 12 virmugens from 4 parasites are also stored in VirmugenDB. Virmugens tend to involve metabolism of nutrients (e.g., amino acids, carbohydrates, and nucleotides) and cell membrane formation. Host genes whose expressions were regulated by virmugen mutation vaccines or wild type virulent pathogens have also been annotated and systematically compared. The bioinformatics annotation and analysis of virmugens helps to elucidate enriched virmugen profiles and the mechanisms of protective immunity, and further supports rational vaccine design. Copyright © 2012 Elsevier Ltd. All rights reserved.

Citation

Rebecca Racz, Monica Chung, Zuoshuang Xiang, Yongqun He. Systematic annotation and analysis of "virmugens"-virulence factors whose mutants can be used as live attenuated vaccines. Vaccine. 2013 Jan 21;31(5):797-805

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23219434

View Full Text