Correlation Engine 2.0
Clear Search sequence regions


  • biotin (3)
  • chromatin (2)
  • H4 1 (1)
  • HLCS (2)
  • multiprotein complex (1)
  • native (2)
  • Sizes of these terms reflect their relevance to your search.

    Holocarboxylase synthetase (HLCS) is part of a multiprotein gene repression complex and catalyzes the covalent binding of biotin to lysines (K) in histones H3 and H4, thereby creating rare gene repression marks such as K16-biotinylated histone H4 (H4K16bio). We tested the hypothesis that H4K16bio contributes toward nucleosome condensation and gene repression by HLCS. We used recombinant histone H4 in which K16 was mutated to a cysteine (H4K16C) for subsequent chemical biotinylation of the sulfhydryl group to create H4K16Cbio. Nucleosomes were assembled by using H4K16Cbio and the 'Widom 601' nucleosomal DNA position sequence; biotin-free histone H4 and H4K16C were used as controls. Nucleosomal compaction was analyzed using atomic force microscopy (AFM). The length of DNA per nucleosome was ∼30% greater in H4K16Cbio-containing histone octamers (61.14±10.92nm) compared with native H4 (46.89±12.6nm) and H4K16C (47.26±10.32nm), suggesting biotin-dependent chromatin condensation (P<0.001). Likewise, the number of DNA turns around histone core octamers was ∼17.2% greater in in H4K16Cbio-containing octamers (1.78±0.16) compared with native H4 (1.52±0.21) and H4K16C (1.52±0.17), judged by the rotation angle (P<0.001; N=150). We conclude that biotinylation of K16 in histone H4 contributes toward chromatin condensation. Copyright © 2012 Elsevier Inc. All rights reserved.

    Citation

    Mahendra P Singh, Subhashinee S K Wijeratne, Janos Zempleni. Biotinylation of lysine 16 in histone H4 contributes toward nucleosome condensation. Archives of biochemistry and biophysics. 2013 Jan 15;529(2):105-11

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 23219734

    View Full Text