Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The corpus luteum contains differentiated steroidogenic cells that have exited the cell cycle of proliferation. In some tissues, deletion of quiescent, differentiated cells by apoptosis in response to injury or pathology is preceded by reentry into the cell cycle. We tested whether luteal cells reenter the cell cycle during the physiological process of luteolysis. Ovaries were obtained after injection of cows with a luteolytic dose of prostaglandin F(2)(α) (PGF). In luteal sections, cells co-staining for markers of cell proliferation (MKI67) and apoptosis (cPARP1) increased 24  h after PGF, indicating that cells that reenter the cell cycle undergo apoptosis. The percent of steroidogenic cells (CYP11A1-positive) co-staining for MKI67 increased after PGF, while co-staining of non-steroidogenic cells did not change. Dispersed luteal cells were stained with Nile Red to distinguish lipid-rich steroidogenic cells from nonsteroidogenic cells and co-stained for DNA. Flow cytometry showed that the percent of steroidogenic cells progressing through the cell cycle and undergoing apoptosis increased after PGF. Culturing luteal cells induced reentry of steroidogenic cells into the cell cycle, providing a model to test the influence of the cell cycle on susceptibility to apoptosis. Blocking cells early in the cell cycle using inhibitors reduced cell death in response to treatment with the apoptosis-inducing protein, Fas ligand (FASL). Progesterone treatment reduced progression through the cell cycle and decreased FASL-induced apoptosis. In summary, steroidogenic cells reenter the cell cycle upon induction of luteal regression. While quiescent cells are resistant to apoptosis, entry into the cell cycle promotes susceptibility to apoptosis.

Citation

Susan M Quirk, Robert G Cowan, Rebecca M Harman. Role of the cell cycle in regression of the corpus luteum. Reproduction (Cambridge, England). 2013 Feb;145(2):161-75

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23241346

View Full Text