Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Passive avoidance (PA) conditioning is a fear motivated task able to initiate a cascade of altered gene expression within the hippocampus, a structure critical to learning and memory. We have previously shown that neurofibromin (NF1) and amyloid precursor protein (APP), two genes implicated in cognitive function, are differentially expressed in brain of dopamine D3 receptor knock-out mice (D(3)R(-/-)), suggesting that the receptor might have a role in their trascriptional regulation. Here in this study, we hypothesized that during acquisition of PA conditioning the expression of NF1 and APP genes could be influenced by D(3)Rs. To address this issue, we analyzed the expression of NF1 and APP in the hippocampus of both wild-type (WT) and D(3)R(-/-) mice subjected to the single trial step-through PA paradigm. Our finding demonstrated that (1) D(3)R(-/-) mice exhibit increased cognitive performance as compared to WT mice in the step-through PA trial; (2) acquisition of PA increased D(3)R and NF1, but not APP expression in WT mice hippocampus; (3) PA-driven NF1 induction in WT was abrogated in D(3)R(-/-) mice and finally that (4) the heightened basal APP expression observed in naive D(3)R(-/-) mice was totally reversed by acquisition of PA. In conclusion, the present finding show for the first time that both D(3)R and NF1 genes are upregulated following PA conditioning and suggest that hippocampal D(3)Rs might be relevant to NF1 transcriptional regulation in the hippocampus.


Agata Grazia D'Amico, Alessandro Castorina, Gian Marco Leggio, Filippo Drago, Velia D'Agata. Hippocampal neurofibromin and amyloid precursor protein expression in dopamine D3 receptor knock-out mice following passive avoidance conditioning. Neurochemical research. 2013 Mar;38(3):564-72

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 23242790

View Full Text