Correlation Engine 2.0
Clear Search sequence regions


  • adducts (2)
  • amine (3)
  • bind (1)
  • cases (1)
  • donor (3)
  • factors (1)
  • insights (1)
  • ligand (3)
  • methyl (1)
  • reagents (1)
  • TauD (3)
  • Sizes of these terms reflect their relevance to your search.

    The pentadentate ligand (n)Bu-P2DA (2(b), (n)Bu-P2DA = N-(1',1'-bis(2-pyridyl)pentyl)iminodiacetate) was designed to bind an iron center in a carboxylate-rich environment similar to that found in the active sites of TauD and other α-ketoglutarate-dependent mononuclear non-heme iron enzymes. The iron(II) complex (n)Bu(4)N[Fe(II)(Cl)((n)Bu-P2DA)] (3(b)-Cl) was synthesized and crystallographically characterized to have a 2-pyridine-2-carboxylate donor set in the plane perpendicular to the Fe-Cl bond. Reaction of 3(b)-Cl with N-heterocyclic amines such as pyridine or imidazole yielded the N-heterocyclic amine adducts [Fe(II)(N)((n)Bu-P2DA)]. These adducts in turn reacted with oxo-transfer reagents at -95 °C to afford a short-lived oxoiron(IV) complex [Fe(IV)(O)((n)Bu-P2DA)] (5(b)) in yields as high as 90% depending on the heterocycle used. Complex 5(b) exhibits near-IR absorption features (λ(max) = 770 nm) and Mossbauer parameters (δ = 0.04 mm/s; ΔE(Q) = 1.13 mm/s; D = 27±2 cm(-1)) characteristic of an S = 1 oxoiron(IV) species. Direct evidence for an Fe=O bond of 1.66 Å was found from EXAFS analysis. DFT calculations on 5(b) in its S =1 spin state afforded a geometry-optimized structure consistent with the EXAFS data. They further demonstrated that the replacement of two pyridine donors in [Fe(IV)(O)(N4Py)](2+) (N4Py = N,N-(bis(2-pyridyl)methyl)N-bis(2-pyridylmethyl)amine) with carboxylate donors in 5(b) decreased the energy gap between the ground S = 1 and the excited S = 2 states, reflecting the weaker equatorial ligand field of 5(b) and accounting for its larger D value. Complex 5(b) reacted readily with dihydrotoluene, methyldiphenylphosphine and ferrocene at -60 °C, and in all cases was approximately a 5-fold more reactive oxidant than [Fe(IV)(O)(N4Py)](2+). The reactivity differences between these two complexes may arise from a combination of electronic and steric factors. Carboxylate-rich 5(b) represents the closest structural mimic reported thus far of the oxoiron(IV) intermediate ('J') found in TauD and provides us with vital insights into the role carboxylate ligands play in modulating the spectroscopic and reactivity properties of the non-heme oxoiron(IV) moiety.

    Citation

    Aidan R McDonald, Yisong Guo, Van V Vu, Emile L Bominaar, Eckard Münck, Lawrence Que. A Mononuclear Carboxylate-Rich Oxoiron(IV) Complex: a Structural and Functional Mimic of TauD Intermediate 'J Chemical science (Royal Society of Chemistry : 2010). 2012;3:1680-1693


    PMID: 23267430

    View Full Text