Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

A sensitive method for the simultaneous determination of quazepam and two of its metabolites, 2-oxoquazepam and 3-hydroxy-2-oxoquazepam, in human urine was developed using gas chromatography-mass spectrometry (GC/MS) with an Rtx-5MS capillary column. The quazepam and its metabolites were extracted from human urine using a simple solid-phase extraction Oasis(®) HLB cartridge column, and the 3-hydroxy-2-oxoquazepam was derivatised using BSTFA/1%TMCS and pyridine at 60 °C for 30 min. The mass spectrometric detection of the analytes was performed in the full scan mode, m/z 60-480, and selected ion monitoring (SIM) mode, m/z 386, for quazepam; m/z 342, for 2-oxoquazepam; m/z 429, for 3-hydroxy-2-oxoquazepam-TMS; and m/z 284, for alprazolam-d5 (internal standard), by electron ionization. The calibration curves of quazepam and its metabolites in urine showed good linearity in the concentration range of 2.5-500 ng/0.2 ml of urine. The average recoveries of quazepam and its metabolites from 0.2 ml of urine containing 500 ng and 50 ng of each drug were 71-83% and 88-90%, respectively. The limits of detection of quazepam, 2-oxoquazepam and 3-hydroxy-2-quazepam in urine by the selected ion monitoring mode were 0.096-0.37 ng/ml. This method would be applicable to other forensic biological materials containing low concentrations of quazepam and its metabolites. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

Citation

Masaru Terada, Tatsuo Shinozuka, Chika Hasegawa, Einosuke Tanaka, Makiko Hayashida, Youkichi Ohno, Kunihiko Kurosaki. Analysis of quazepam and its metabolites in human urine by gas chromatography-mass spectrometry: application to a forensic case. Forensic science international. 2013 Apr 10;227(1-3):95-9


PMID: 23290298

View Full Text